\(\int \frac {(d+e x)^2}{(d^2-e^2 x^2)^{7/2}} \, dx\) [49]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 77 \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {2 (d+e x)}{5 e \left (d^2-e^2 x^2\right )^{5/2}}+\frac {x}{5 d^2 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 x}{5 d^4 \sqrt {d^2-e^2 x^2}} \]

[Out]

2/5*(e*x+d)/e/(-e^2*x^2+d^2)^(5/2)+1/5*x/d^2/(-e^2*x^2+d^2)^(3/2)+2/5*x/d^4/(-e^2*x^2+d^2)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {667, 198, 197} \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {x}{5 d^2 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 (d+e x)}{5 e \left (d^2-e^2 x^2\right )^{5/2}}+\frac {2 x}{5 d^4 \sqrt {d^2-e^2 x^2}} \]

[In]

Int[(d + e*x)^2/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(2*(d + e*x))/(5*e*(d^2 - e^2*x^2)^(5/2)) + x/(5*d^2*(d^2 - e^2*x^2)^(3/2)) + (2*x)/(5*d^4*Sqrt[d^2 - e^2*x^2]
)

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 667

Int[((d_) + (e_.)*(x_))^2*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)*((a + c*x^2)^(p + 1)/(c*(p
 + 1))), x] - Dist[e^2*((p + 2)/(c*(p + 1))), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, p}, x] &&
EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (d+e x)}{5 e \left (d^2-e^2 x^2\right )^{5/2}}+\frac {3}{5} \int \frac {1}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx \\ & = \frac {2 (d+e x)}{5 e \left (d^2-e^2 x^2\right )^{5/2}}+\frac {x}{5 d^2 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 \int \frac {1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{5 d^2} \\ & = \frac {2 (d+e x)}{5 e \left (d^2-e^2 x^2\right )^{5/2}}+\frac {x}{5 d^2 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {2 x}{5 d^4 \sqrt {d^2-e^2 x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.91 \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (2 d^3+d^2 e x-4 d e^2 x^2+2 e^3 x^3\right )}{5 d^4 e (d-e x)^3 (d+e x)} \]

[In]

Integrate[(d + e*x)^2/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(2*d^3 + d^2*e*x - 4*d*e^2*x^2 + 2*e^3*x^3))/(5*d^4*e*(d - e*x)^3*(d + e*x))

Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.84

method result size
gosper \(\frac {\left (-e x +d \right ) \left (e x +d \right )^{3} \left (2 e^{3} x^{3}-4 d \,e^{2} x^{2}+d^{2} e x +2 d^{3}\right )}{5 d^{4} e \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}\) \(65\)
trager \(\frac {\left (2 e^{3} x^{3}-4 d \,e^{2} x^{2}+d^{2} e x +2 d^{3}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{5 d^{4} \left (-e x +d \right )^{3} e \left (e x +d \right )}\) \(67\)
default \(d^{2} \left (\frac {x}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {\frac {4 x}{15 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {8 x}{15 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}}{d^{2}}\right )+e^{2} \left (\frac {x}{4 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {d^{2} \left (\frac {x}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {\frac {4 x}{15 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {8 x}{15 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}}{d^{2}}\right )}{4 e^{2}}\right )+\frac {2 d}{5 e \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\) \(193\)

[In]

int((e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/5*(-e*x+d)*(e*x+d)^3*(2*e^3*x^3-4*d*e^2*x^2+d^2*e*x+2*d^3)/d^4/e/(-e^2*x^2+d^2)^(7/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.51 \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {2 \, e^{4} x^{4} - 4 \, d e^{3} x^{3} + 4 \, d^{3} e x - 2 \, d^{4} - {\left (2 \, e^{3} x^{3} - 4 \, d e^{2} x^{2} + d^{2} e x + 2 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{5 \, {\left (d^{4} e^{5} x^{4} - 2 \, d^{5} e^{4} x^{3} + 2 \, d^{7} e^{2} x - d^{8} e\right )}} \]

[In]

integrate((e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/5*(2*e^4*x^4 - 4*d*e^3*x^3 + 4*d^3*e*x - 2*d^4 - (2*e^3*x^3 - 4*d*e^2*x^2 + d^2*e*x + 2*d^3)*sqrt(-e^2*x^2 +
 d^2))/(d^4*e^5*x^4 - 2*d^5*e^4*x^3 + 2*d^7*e^2*x - d^8*e)

Sympy [F]

\[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {\left (d + e x\right )^{2}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate((e*x+d)**2/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral((d + e*x)**2/(-(-d + e*x)*(d + e*x))**(7/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.01 \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {2 \, x}{5 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}}} + \frac {2 \, d}{5 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e} + \frac {x}{5 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d^{2}} + \frac {2 \, x}{5 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{4}} \]

[In]

integrate((e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

2/5*x/(-e^2*x^2 + d^2)^(5/2) + 2/5*d/((-e^2*x^2 + d^2)^(5/2)*e) + 1/5*x/((-e^2*x^2 + d^2)^(3/2)*d^2) + 2/5*x/(
sqrt(-e^2*x^2 + d^2)*d^4)

Giac [F]

\[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2/(-e^2*x^2 + d^2)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 11.49 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.86 \[ \int \frac {(d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {\sqrt {d^2-e^2\,x^2}\,\left (2\,d^3+d^2\,e\,x-4\,d\,e^2\,x^2+2\,e^3\,x^3\right )}{5\,d^4\,e\,\left (d+e\,x\right )\,{\left (d-e\,x\right )}^3} \]

[In]

int((d + e*x)^2/(d^2 - e^2*x^2)^(7/2),x)

[Out]

((d^2 - e^2*x^2)^(1/2)*(2*d^3 + 2*e^3*x^3 - 4*d*e^2*x^2 + d^2*e*x))/(5*d^4*e*(d + e*x)*(d - e*x)^3)